Components Description

CN1:
SATA Power connector
External 12V input

SW1:
12V Power source selection

CN2:
PCIe Gen4 M-Key M.2 connector

LED2/LED3: Red+Green+Blue
Tri-color LEDs

RT1:
Temperature sensor

CN4:
Micro USB connector

LED1:
Green
M.2 Activity LED

LED4:
Blue
P3V3 LED

LED1/LED2/LED3:
Red+Green+Blue
Tri-color LEDs

CN2:
PCIe Gen4 M-Key M.2 connector
Headers Description

J4

<table>
<thead>
<tr>
<th>Header</th>
<th>Pin30</th>
<th>GND</th>
<th>M2_MFG_Clock</th>
<th>M2_MFG_Data</th>
</tr>
</thead>
</table>

J1

<table>
<thead>
<tr>
<th>Header</th>
<th>Slot_WAKE#</th>
<th>Slot_CLKREQ#</th>
<th>Slot_PERST#</th>
<th>NC</th>
<th>Slot_PRSNT#</th>
<th>Slot_CLKREQ#</th>
<th>MSP_BUF_SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2_WAKE#</td>
<td>M2_CLKREQ#</td>
<td>M2_PERST#</td>
<td>M2_IFDET#</td>
<td>M2_PRSNT#</td>
<td>M2_DEVSLP</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

J14

<table>
<thead>
<tr>
<th>Header</th>
<th>GND</th>
<th>M2_SCL</th>
<th>M2_SDA</th>
<th>3.3V</th>
</tr>
</thead>
</table>

![Image of the headers and their connections on a PCB]
CLI Setup

Step 1. Install and launch Tera Term application
(or Hyper Terminal requires version 3.0 or higher).

Step 2: To ensure proper communications between NVMe JBOF controller and the VT100 Terminal emulation, please configure the VT100 Terminal emulation settings to the values shown below:

Step 3:
For “Port”, select COM3 in this example.
(Depend on which COM port used on Host)
For “Baud rate”, select 115200.
For “Data”, select 8 bit. For “Parity”, select none.
For “Stop”, select 1 bit. For “Flow control”, select: none.
Click OK when you have finished your selections.
CLI Commands

Help
This command provides an online table of contents, providing brief descriptions of the supported command groups and built-in commands.

Usage: help

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ls</td>
<td>List Devices Status</td>
</tr>
<tr>
<td>led</td>
<td>Set led On/Off</td>
</tr>
<tr>
<td>select</td>
<td>Set I2C direction</td>
</tr>
<tr>
<td>iicw</td>
<td>I2C Write bytes</td>
</tr>
<tr>
<td>iicr</td>
<td>I2C Read bytes</td>
</tr>
<tr>
<td>iicwr</td>
<td>I2C WriteRead bytes</td>
</tr>
<tr>
<td>ver</td>
<td>FW Version</td>
</tr>
</tbody>
</table>
lsd
Shows the temperature of RT1 and the current M.2 3.3 voltage consumed.
Usage: lsd

<table>
<thead>
<tr>
<th>lsd</th>
<th>Temperature: 23</th>
<th>Current: 400 mA</th>
</tr>
</thead>
</table>

led
Turn on the Tri-colors LEDs or toggle light.
Usage: led <LED_id(D)> <on|off>

There are two Tri-color LEDs on location LED2 and LED3 built in board.
Parameter LED1 is **Green**, LED2 is **Red**, LED3 is **blue** color in LED2.
Parameter LED4 is **Green**, LED5 is **Red**, LED6 is **blue** color in LED3.
select
Select the M.2 SMbus accessing from on board header or Turn on the Tri-colors LEDs
0: Header(J14) to M.2
1: uP to M.2
 Usage: select<0|1>

```cmd
I2C Direction: U2 to M2
```
```
I2C Direction: uP to M2
```

iicw
Write 3Bytes of data to M.2 drive
 Usage: iicw <Device Addr(H)> <Register Addr(H)> <WriteData(H)>
 - device Addr(H) : Device address
 - Register Addr(H) : register address
 - WriteData(H) : 3 bytes data

```cmd
iicw 00 0 aa bb cc
SlaveAddress:0xa0, WriteData: 0x0 0x1a 0xbb 0xc0
```

Note: There is a EEPROM with 0xA0 address in board for any configuration data store.
iicr
Read data from device
Usage: iicr <Device Addr(H)> <read byte(D)>
- device Addr(H) : Device address
- read byte(D) : numbers of byte

iicwr
Read data from device and start from address
Usage: iicwr <Device Addr(H)> <read byte(D)> <start addr<H>>
- device Addr(H) : Device address
- read byte(D) : numbers of byte
- start addr(H) : start address